Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 150, 2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739308

RESUMO

Rapid sea-level rise between the Last Glacial Maximum (LGM) and the mid-Holocene transformed the Southeast Asian coastal landscape, but the impact on human demography remains unclear. Here, we create a paleogeographic map, focusing on sea-level changes during the period spanning the LGM to the present-day and infer the human population history in Southeast and South Asia using 763 high-coverage whole-genome sequencing datasets from 59 ethnic groups. We show that sea-level rise, in particular meltwater pulses 1 A (MWP1A, ~14,500-14,000 years ago) and 1B (MWP1B, ~11,500-11,000 years ago), reduced land area by over 50% since the LGM, resulting in segregation of local human populations. Following periods of rapid sea-level rises, population pressure drove the migration of Malaysian Negritos into South Asia. Integrated paleogeographic and population genomic analysis demonstrates the earliest documented instance of forced human migration driven by sea-level rise.


Assuntos
Migração Humana , Elevação do Nível do Mar , Humanos , Ásia Meridional , Dinâmica Populacional , Genômica
2.
Commun Earth Environ ; 4(1): 102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665203

RESUMO

Including sea-level rise (SLR) projections in planning and implementing coastal adaptation is crucial. Here we analyze the first global survey on the use of SLR projections for 2050 and 2100. Two-hundred and fifty-three coastal practitioners engaged in adaptation/planning from 49 countries provided complete answers to the survey which was distributed in nine languages - Arabic, Chinese, English, French, Hebrew, Japanese, Korean, Portuguese and Spanish. While recognition of the threat of SLR is almost universal, only 72% of respondents currently utilize SLR projections. Generally, developing countries have lower levels of utilization. There is no global standard in the use of SLR projections: for locations using a standard data structure, 53% are planning using a single projection, while the remainder are using multiple projections, with 13% considering a low-probability high-end scenario. Countries with histories of adaptation and consistent national support show greater assimilation of SLR projections into adaptation decisions. This research provides new insights about current planning practices and can inform important ongoing efforts on the application of the science that is essential to the promotion of effective adaptation.

3.
Nat Commun ; 13(1): 966, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35181652

RESUMO

Sea-level rise is a significant indicator of broader climate changes, and the time of emergence concept can be used to identify when modern rates of sea-level rise emerged above background variability. Yet a range of estimates of the timing persists both globally and regionally. Here, we use a global database of proxy sea-level records of the Common Era (0-2000 CE) and show that globally, it is very likely that rates of sea-level rise emerged above pre-industrial rates by 1863 CE (P = 0.9; range of 1825 [P = 0.66] to 1873 CE [P = 0.95]), which is similar in timing to evidence for early ocean warming and glacier melt. The time of emergence in the North Atlantic reveals a distinct spatial pattern, appearing earliest in the mid-Atlantic region (1872-1894 CE) and later in Canada and Europe (1930-1964 CE). Regional and local sea-level changes occurring over different time periods drive the spatial pattern in emergence, suggesting regional processes underlie centennial-timescale sea-level variability over the Common Era.

4.
Nat Commun ; 12(1): 7119, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880254

RESUMO

The amplification of coastal hazards such as distant-source tsunamis under future relative sea-level rise (RSLR) is poorly constrained. In southern California, the Alaska-Aleutian subduction zone has been identified as an earthquake source region of particular concern for a worst-case scenario distant-source tsunami. Here, we explore how RSLR over the next century will influence future maximum nearshore tsunami heights (MNTH) at the Ports of Los Angeles and Long Beach. Earthquake and tsunami modeling combined with local probabilistic RSLR projections show the increased potential for more frequent, relatively low magnitude earthquakes to produce distant-source tsunamis that exceed historically observed MNTH. By 2100, under RSLR projections for a high-emissions representative concentration pathway (RCP8.5), the earthquake magnitude required to produce >1 m MNTH falls from ~Mw9.1 (required today) to Mw8.0, a magnitude that is ~6.7 times more frequent along the Alaska-Aleutian subduction zone.

5.
Nat Commun ; 12(1): 1841, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758184

RESUMO

Sea-level budgets account for the contributions of processes driving sea-level change, but are predominantly focused on global-mean sea level and limited to the 20th and 21st centuries. Here we estimate site-specific sea-level budgets along the U.S. Atlantic coast during the Common Era (0-2000 CE) by separating relative sea-level (RSL) records into process-related signals on different spatial scales. Regional-scale, temporally linear processes driven by glacial isostatic adjustment dominate RSL change and exhibit a spatial gradient, with fastest rates of rise in southern New Jersey (1.6 ± 0.02 mm yr-1). Regional and local, temporally non-linear processes, such as ocean/atmosphere dynamics and groundwater withdrawal, contributed between -0.3 and 0.4 mm yr-1 over centennial timescales. The most significant change in the budgets is the increasing influence of the common global signal due to ice melt and thermal expansion since 1800 CE, which became a dominant contributor to RSL with a 20th century rate of 1.3 ± 0.1 mm yr-1.

6.
Mar Pollut Bull ; 151: 110721, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056581

RESUMO

Sediment cores from Staten Island's salt marsh contain multiple historical oil spill events that impact ecological health. Microtox solid phase bioassay indicated moderate to high toxicity. Multiple spikes of TPH (6524 to 9586 mg/kg) and Σ16 PAH (15.5 to 18.9 mg/kg) were co-incident with known oil spills. A high TPH background of 400-700 mg/kg was attributed to diffuse sources. Depth-profiled metals Cu (1243 mg/kg), Zn (1814 mg/kg), Pb (1140 mg/kg), Ni (109 mg/kg), Hg (7 mg/kg), Cd 15 (mg/kg) exceeded sediment quality guidelines confirming adverse biological effects. Changes in Pb206/207 suggested three metal contaminant sources and diatom assemblages responded to two contamination events. Organic and metal contamination in Saw Mill Creek Marsh may harm sensitive biota, we recommend caution in the management of the 20-50 cm sediment interval because disturbance could lead to remobilisation of pre-existing legacy contamination into the waterway.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água/análise , Áreas Alagadas , Sedimentos Geológicos , Ilhas , Metais Pesados , Cidade de Nova Iorque , Poluição por Petróleo , Poluentes Químicos da Água/toxicidade
8.
Nat Commun ; 9(1): 2687, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002365

RESUMO

Tidal marshes rank among Earth's vulnerable ecosystems, which will retreat if future rates of relative sea-level rise (RSLR) exceed marshes' ability to accrete vertically. Here, we assess the limits to marsh vulnerability by analyzing >780 Holocene reconstructions of tidal marsh evolution in Great Britain. These reconstructions include both transgressive (tidal marsh retreat) and regressive (tidal marsh expansion) contacts. The probability of a marsh retreat was conditional upon Holocene rates of RSLR, which varied between -7.7 and 15.2 mm/yr. Holocene records indicate that marshes are nine times more likely to retreat than expand when RSLR rates are ≥7.1 mm/yr. Coupling estimated probabilities of marsh retreat with projections of future RSLR suggests a major risk of tidal marsh loss in the twenty-first century. All of Great Britain has a >80% probability of a marsh retreat under Representative Concentration Pathway (RCP) 8.5 by 2100, with areas of southern and eastern England achieving this probability by 2040.

9.
Sci Rep ; 8(1): 9478, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29930337

RESUMO

Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m-3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.

10.
Proc Natl Acad Sci U S A ; 114(45): 11861-11866, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078274

RESUMO

The flood hazard in New York City depends on both storm surges and rising sea levels. We combine modeled storm surges with probabilistic sea-level rise projections to assess future coastal inundation in New York City from the preindustrial era through 2300 CE. The storm surges are derived from large sets of synthetic tropical cyclones, downscaled from RCP8.5 simulations from three CMIP5 models. The sea-level rise projections account for potential partial collapse of the Antarctic ice sheet in assessing future coastal inundation. CMIP5 models indicate that there will be minimal change in storm-surge heights from 2010 to 2100 or 2300, because the predicted strengthening of the strongest storms will be compensated by storm tracks moving offshore at the latitude of New York City. However, projected sea-level rise causes overall flood heights associated with tropical cyclones in New York City in coming centuries to increase greatly compared with preindustrial or modern flood heights. For the various sea-level rise scenarios we consider, the 1-in-500-y flood event increases from 3.4 m above mean tidal level during 1970-2005 to 4.0-5.1 m above mean tidal level by 2080-2100 and ranges from 5.0-15.4 m above mean tidal level by 2280-2300. Further, we find that the return period of a 2.25-m flood has decreased from ∼500 y before 1800 to ∼25 y during 1970-2005 and further decreases to ∼5 y by 2030-2045 in 95% of our simulations. The 2.25-m flood height is permanently exceeded by 2280-2300 for scenarios that include Antarctica's potential partial collapse.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Tempestades Ciclônicas , Inundações , Desastres , Modelos Teóricos , Cidade de Nova Iorque , Oceanos e Mares
11.
Nat Commun ; 8: 16019, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28722009

RESUMO

The devastating 2004 Indian Ocean tsunami caught millions of coastal residents and the scientific community off-guard. Subsequent research in the Indian Ocean basin has identified prehistoric tsunamis, but the timing and recurrence intervals of such events are uncertain. Here we present an extraordinary 7,400 year stratigraphic sequence of prehistoric tsunami deposits from a coastal cave in Aceh, Indonesia. This record demonstrates that at least 11 prehistoric tsunamis struck the Aceh coast between 7,400 and 2,900 years ago. The average time period between tsunamis is about 450 years with intervals ranging from a long, dormant period of over 2,000 years, to multiple tsunamis within the span of a century. Although there is evidence that the likelihood of another tsunamigenic earthquake in Aceh province is high, these variable recurrence intervals suggest that long dormant periods may follow Sunda megathrust ruptures as large as that of the 2004 Indian Ocean tsunami.

12.
Nat Commun ; 8: 14387, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28186122

RESUMO

Sea-level rise is a global problem, yet to forecast future changes, we must understand how and why relative sea level (RSL) varied in the past, on local to global scales. In East and Southeast Asia, details of Holocene RSL are poorly understood. Here we present two independent high-resolution RSL proxy records from Belitung Island on the Sunda Shelf. These records capture spatial variations in glacial isostatic adjustment and paleotidal range, yet both reveal a RSL history between 6850 and 6500 cal years BP that includes two 0.6 m fluctuations, with rates of RSL change reaching 13±4 mm per year (2σ). Observations along the south coast of China, although of a lower resolution, reveal fluctuations similar in amplitude and timing to those on the Sunda Shelf. The consistency of the Southeast Asian records, from sites 2,600 km apart, suggests that the records reflect regional changes in RSL that are unprecedented in modern times.


Assuntos
Antozoários/fisiologia , Mudança Climática , Clima , Movimentos da Água , Algoritmos , Animais , Sudeste Asiático , China , Recifes de Corais , Fósseis , Geografia , Modelos Teóricos , Oceanos e Mares , Ondas de Maré , Fatores de Tempo
13.
Proc Natl Acad Sci U S A ; 113(43): 12071-12075, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27790992

RESUMO

Coastal flood hazard varies in response to changes in storm surge climatology and the sea level. Here we combine probabilistic projections of the sea level and storm surge climatology to estimate the temporal evolution of flood hazard. We find that New York City's flood hazard has increased significantly over the past two centuries and is very likely to increase more sharply over the 21st century. Due to the effect of sea level rise, the return period of Hurricane Sandy's flood height decreased by a factor of ∼3× from year 1800 to 2000 and is estimated to decrease by a further ∼4.4× from 2000 to 2100 under a moderate-emissions pathway. When potential storm climatology change over the 21st century is also accounted for, Sandy's return period is estimated to decrease by ∼3× to 17× from 2000 to 2100.

14.
Proc Natl Acad Sci U S A ; 113(11): E1434-41, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903659

RESUMO

We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0-700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000-1400 CE is associated with ∼ 0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability [Formula: see text]) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely ([Formula: see text]) that 20th century GSL would have risen by less than 51% of the observed [Formula: see text] cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change's Fifth Assessment Report.

15.
Proc Natl Acad Sci U S A ; 112(41): 12610-5, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417111

RESUMO

In a changing climate, future inundation of the United States' Atlantic coast will depend on both storm surges during tropical cyclones and the rising relative sea levels on which those surges occur. However, the observational record of tropical cyclones in the North Atlantic basin is too short (A.D. 1851 to present) to accurately assess long-term trends in storm activity. To overcome this limitation, we use proxy sea level records, and downscale three CMIP5 models to generate large synthetic tropical cyclone data sets for the North Atlantic basin; driving climate conditions span from A.D. 850 to A.D. 2005. We compare pre-anthropogenic era (A.D. 850-1800) and anthropogenic era (A.D.1970-2005) storm surge model results for New York City, exposing links between increased rates of sea level rise and storm flood heights. We find that mean flood heights increased by ∼1.24 m (due mainly to sea level rise) from ∼A.D. 850 to the anthropogenic era, a result that is significant at the 99% confidence level. Additionally, changes in tropical cyclone characteristics have led to increases in the extremes of the types of storms that create the largest storm surges for New York City. As a result, flood risk has greatly increased for the region; for example, the 500-y return period for a ∼2.25-m flood height during the pre-anthropogenic era has decreased to ∼24.4 y in the anthropogenic era. Our results indicate the impacts of climate change on coastal inundation, and call for advanced risk management strategies.


Assuntos
Mudança Climática , Tempestades Ciclônicas , Desastres , Inundações , Modelos Teóricos , Cidade de Nova Iorque
16.
Environ Health Perspect ; 122(10): 1081-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25009122

RESUMO

BACKGROUND: High ambient temperatures are a risk factor for nephrolithiasis, but the precise relationship between temperature and kidney stone presentation is unknown. OBJECTIVES: Our objective was to estimate associations between mean daily temperature and kidney stone presentation according to lag time and temperatures. METHODS: Using a time-series design and distributed lag nonlinear models, we estimated the relative risk (RR) of kidney stone presentation associated with mean daily temperatures, including cumulative RR for a 20-day period, and RR for individual daily lags through 20 days. Our analysis used data from the MarketScan Commercial Claims database for 60,433 patients who sought medical evaluation or treatment of kidney stones from 2005-2011 in the U.S. cities of Atlanta, Georgia; Chicago, Illinois; Dallas, Texas; Los Angeles, California; and Philadelphia, Pennsylvania. RESULTS: Associations between mean daily temperature and kidney stone presentation were not monotonic, and there was variation in the exposure-response curve shapes and the strength of associations at different temperatures. However, in most cases RRs increased for temperatures above the reference value of 10°C. The cumulative RR for a daily mean temperature of 30°C versus 10°C was 1.38 in Atlanta (95% CI: 1.07, 1.79), 1.37 in Chicago (95% CI: 1.07, 1.76), 1.36 in Dallas (95% CI: 1.10, 1.69), 1.11 in Los Angeles (95% CI: 0.73, 1.68), and 1.47 in Philadelphia (95% CI: 1.00, 2.17). Kidney stone presentations also were positively associated with temperatures < 2°C in Atlanta, and < 10°C in Chicago and Philadelphia. In four cities, the strongest association between kidney stone presentation and a daily mean temperature of 30°C versus 10°C was estimated for lags of ≤ 3 days. CONCLUSIONS: In general, kidney stone presentations increased with higher daily mean temperatures, with the strongest associations estimated for lags of only a few days. These findings further support an adverse effect of high temperatures on nephrolithiasis.


Assuntos
Clima , Exposição Ambiental/estatística & dados numéricos , Cálculos Renais/epidemiologia , Temperatura , Cidades/epidemiologia , Feminino , Humanos , Masculino , Fatores de Risco , Fatores de Tempo , Estados Unidos/epidemiologia
17.
Proc Natl Acad Sci U S A ; 108(27): 11017-22, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21690367

RESUMO

We present new sea-level reconstructions for the past 2100 y based on salt-marsh sedimentary sequences from the US Atlantic coast. The data from North Carolina reveal four phases of persistent sea-level change after correction for glacial isostatic adjustment. Sea level was stable from at least BC 100 until AD 950. Sea level then increased for 400 y at a rate of 0.6 mm/y, followed by a further period of stable, or slightly falling, sea level that persisted until the late 19th century. Since then, sea level has risen at an average rate of 2.1 mm/y, representing the steepest century-scale increase of the past two millennia. This rate was initiated between AD 1865 and 1892. Using an extended semiempirical modeling approach, we show that these sea-level changes are consistent with global temperature for at least the past millennium.

18.
J Forensic Sci ; 51(3): 643-50, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16696714

RESUMO

Diatoms are a group of unicellular algae that have been recorded and classified for over 200 years and have been used in a range of applications in forensic science. We have developed a quantitative diatom-based reconstruction technique to confirm drowning as a cause of death and localize the site of drowning in two recent, high-profile, case studies. In both case studies we collected diatom samples from the local and/or regional area to act as a control in the examination of diatom assemblages associated with lungs and clothing. In Case Study 1 the modern analog technique suggested that all lung and clothing samples have statistically significant similarities to control samples from shallow water habitats. In Case Study 2, the analog matching suggested that the majority of lung samples show a statistically significant relationship to samples from a pond, indicating that this was the drowning medium.


Assuntos
Diatomáceas/isolamento & purificação , Afogamento/diagnóstico , Medicina Legal/métodos , Vestuário , Feminino , Água Doce , Humanos , Pulmão/patologia , Masculino , Especificidade da Espécie
19.
Science ; 306(5703): 1918-20, 2004 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-15591198

RESUMO

In eastern Hokkaido, 60 to 80 kilometers above a subducting oceanic plate, tidal mudflats changed into freshwater forests during the first decades after a 17th-century tsunami. The mudflats gradually rose by a meter, as judged from fossil diatom assemblages. Both the tsunami and the ensuing uplift exceeded any in the region's 200 years of written history, and both resulted from a shallow plate-boundary earthquake of unusually large size along the Kuril subduction zone. This earthquake probably induced more creep farther down the plate boundary than did any of the region's historical events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...